Control and Cybernetics

vol. 40 (2011) No. 3

GPU-PLWAH: GPU-based implementation of the
PLWAH algorithm for compressing bitmaps *f

by
Witold Andrzejewski and Robert Wrembel

Poznan University of Technology, Institute of Computing Science
PIL. Marii Sktodowskiej-Curie 5, Poznari, Poland

e-mail: {Witold.Andrzejewski,Robert.Wrembel }@cs.put.poznan.pl

Abstract: Bitmap indexes are data structures applied to index-
ing attributes in databases and data warehouses. A drawback of a
bitmap index is that its size increases when the domain of an indexed
attribute increases. As a consequence, for wide domains, the size of a
bitmap index is too large to be efficiently processed. Hence, various
techniques of compressing bitmap indexes have been proposed. A
compression technique incurs some system overhead (mainly CPU)
for compression and decompression operations. For this reason, we
propose to use additional processing power of graphical processing
units (GPUs). In this paper, we present the GPU-PLWAH algo-
rithm that is a parallel implementation of the recently developed
PLWAH compression algorithm. GPU-PLWAH was experimentally
compared to its traditional CPU version as well as to our previously
developed parallel GPU implementation of the WAH compression
algorithm. The experiments show that applying GPUs significantly
reduces compression/decompression time.

Keywords: data warehouse, GPGPU, bitmap index, bitmap
index compression, PLWAH, WAH.

1. Introduction

One of the fundamental research and technological challenges in databases and
data warehouses is assuring the efficiency of the system with respect to query
response time. Multiple query optimization algorithms and data structures have
been proposed in this area. The latter include various types of tree-based or
hash-based indexes (see Lehman and Carey, 1986) or bitmap-based indexes (see
O’Neil and Quass, 1997). The performance of queries based on these types of
indexes differs for different patterns of queries and for different data character-
istics, e.g., cardinalities of indexed attributes or data distribution (see O’Neil,

*Submitted: March 2011; Accepted: August 2011.
TThis work was supported from the Polish Ministry of Science and Higher Education grant
No. N N516 365834

628 W. ANDRZEJEWSKI, R. WREMBEL

O’Neil and Wu, 2007; Wu, Otoo and Shoshani, 2004b; Zaker, Phon-Amnuaisuk
and Haw, 2008). Typically, tree-based indexes (e.g., B-tree) offer good query
performance when defined on attributes of high cardinalities and when used for
optimizing queries that retrieve not more than 10-15% of rows. Bitmap indexes
offer good query performance when defined on attributes of low cardinalities and
for queries that retrieve large numbers of rows. For this reason, bitmap indexes
are commonly used for optimizing analytical queries in data warehouses.

A bitmap inder, in the simplest form, is composed of the so-called bitmaps
(see Section 2), each of which is a vector of bits. Each bit is mapped to a row
in an indexed table. If the value of a bit equals 1, then a row corresponding to
this bit has a certain value of an indexed attribute. Queries, whose predicates
involve attributes indexed by bitmap indexes can be answered fast by perform-
ing bitwise AND, or OR, or NOT operations on bitmaps, a big advantage of
bitmap indexes. The size of a bitmap index strongly depends on the cardinality
(domain width) of an indexed attribute, i.e., the size of a bitmap index increases
when the cardinality of an indexed attribute increases. Thus, for attributes of
high cardinalities (wide domains) bitmap indexes become very large. As a con-
sequence, they cannot fit in main memory and the efficiency of accessing data
with the support of such indexes deteriorates (see Wu and Buchmann, 1998).

In order to improve the efficiency of accessing data with the support of
bitmap indexes defined on attributes of high cardinalities various bitmap index
compression techniques have been proposed in the research literature (see Sec-
tion 3). Typically, compressed indexes have to be decompressed before being
used by a query optimizer, which incurs a CPU overhead and deteriorates query
performance.

Paper contribution. In this paper we propose an extension of the recently
developed bitmap compression technique, called Position List Word Aligned Hy-
brid (PLWAH) (see Deliége, 2009). Our extension, further called GPU-PLWAH,
allows to parallelize compressing and decompressing steps of PLWAH as well
as perform bitwise operations on compressed bitmaps and allows to execute
them on Graphics Processing Units (GPUs). The GPU-PLWAH implementa-
tion was evaluated experimentally. The experiments compared the performance
of standard PLWAH run on a CPU with performance of GPU-PLWAH. The
results show (see Section 5) that GPU-PLWAH significantly reduces compres-
sion/decompression time. Additionally, as a reference we included performance
characteristics of the previously developed GPU implementation of the World
Aligned Hybrid (WAH) bitmap compression technique, reported to provide the
shortest query execution time (see Stockinger and Wu, 2006, and Wu, Otoo and
Shoshani, 2002).

2. Definitions

A bitmap is a vector of bits. Bitmaps will be denoted as uppercase letters.
Bitmap literals will be denoted as a string of ones and zeros starting with the

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 629

most significant bit, and finished with letter “b”, e.g., 1110000, where ones are
more significant than zeros. Each bit in a bitmap is assigned a unique, con-
secutive number starting with 0. The bigger the bit number, the more signif-
icant the corresponding bit is. Bit number ¢ of bitmap B is denoted as B;.
A bitmap length is the number of bits stored in the bitmap. Given bitmap
B, we denote its length ||B||. We define concatenation of two bitmaps, de-
noted +, as an operation that creates a new bitmap, such that it contains all
bits of the first bitmap, followed by all bits of the second bitmap. Formally,
given bitmaps A and B, concatenation A + B creates new bitmap C such that:
ICI = |All + | Bll A Vizo...j a)j-1Cs = Ai AVizyaj... c)-1Ci = Bi—jay-*

A subbitmap of B is any subvector of B that may be created by removing
some of the bits from the beginning and from the ending of B. A subbitmap
of bitmap B, such that it contains bits from 7 to j is denoted B;_,;. Formally,
for a given bitmap B, subbitmap C = B;_,; must satisfy the condition: j <
| B|| AVi=i...; B = Cr—;.

Substitution is an operation that replaces a subbitmap of a given bitmap
with another bitmap. Given bitmaps B and C, substituting subbitmap B;_,;
with C is denoted as B;—.; <+ C, and is formally defined as: B < By_;—1 +
C+ Bjtip|-1-

We distinguish two special bitmaps: 1, and 0,, which are composed of z
ones or x zeroes, respectively. We assume all bitmaps to be divided into 32bit
subbitmaps called words. Given bitmap B, we denote the i-th word by B(:)
(0 based). Formally, B(i) = Bj.32—ix32+31. When the length of B is not the
multiple of 32, we assume the missing trailing bits to be 0. We distinguish
several classes of words. Any word whose 31 less significant bits equal 1 is
called a pre-fill full word. Any word whose 31 less significant bits equal 0 is
called a pre-fill empty word. Any word D such, that Dsg_31 = 10b, and the rest
of the bits encode two (5bit and 25bit) numbers is called a fill empty word. Any
word D such, that D3p_31 = 11b, and the rest of the bits encode two (5bit and
25bit) numbers is called a fill full word. Any word D such that D3; = 0b and
the rest of the bits are zeros and ones, is called a tail word.

Given any array A of numerical values we define operation ezclusive scan
that creates array S A of the same size as A, such that Vi~0SA[k] = Zf:_ol AJA
SA[0] = 0. Similarly, we also define an inclusive scan operation. Inclusive scan,
given any array A of numerical values, creates an array SA of the same size as
A, such that Vi>0SA[k] = Zf:o Ali].

By a device we understand a graphics card hardware (GPU, memory). The
computer hardware (CPU, memory, motherboard), which sends tasks and data
to the device, will be called a host. By kernel we understand a function which
is run concurrently in many threads on a device.

IThis notation of concatenation might be somewhat misleading. For example, 01b+ 10b =
1001b. This stems from the fact, that the second operand of the operator + consists of the
bits that will be more significant in the resulting concatenated bitmap.

630 W. ANDRZEJEWSKI, R. WREMBEL

By query we understand a specification of a subset of data stored in a
database. By query processing we understand a process of finding data specified
in a query by means of compressed bitmap indexes.

3. Related work

3.1. Bitmap compression techniques

Multiple bitmap compression techniques have been proposed in the research
literature, e.g., BBC (see Antoshenkov and Ziauddin, 1996), WAH (see Wu,
Otoo and Shoshani, 2004a,b; Stockinger, 2007), PLWAH (see Deliege, 2009),
RL-Huffman (see Nourani and Tehranipour, 2005), and RLH (see Stabno and
Wrembel, 2009). All of them are based on the so-called run-length encoding.
The run-length encoding consists in encoding continuous vectors of bits having
the same value (either “0" or “1") into: (1) a common value of all bits in the
vector (i.e., either “0" for a vector composed of zeros or “1" for a vector composed
of ones) and (2) the length of the vector (i.e., the number of bits having the
same value). A bitmap is divided into words before being encoded. Words that
include all ones or all zeros are compressed (they are called fills). Words that
include intermixed zeros and ones cannot be compressed (they are called tails).
Words are organized into runs that typically include a fill and a tail.

The main difference between BBC and WAH is that BBC divides bit vectors
into 8-bit words, whereas WAH divides them into 31-bit words. Moreover, BBC
uses four different types of runs, depending on the length of a fill and the
structure of a tail. WAH uses only one type of run. PLWAH is the modification
of WAH. PLWAH improves compression if tail T' that follows fill ' differs from
the fill on few bits only. In such a case, the fill word encodes the difference
between T and F on some bits reserved for this purpose. The main difference
between BBC, WAH and RLH is that length of a word in RLH is parameterized.

The compression techniques proposed in Nourani and Tehranipour (2005)
and Stabno and Wrembel (2009) additionally apply the Huffman compression
(see Huffman, 1952) to the run-length encoded bitmaps. The compression tech-
nique presented in Nourani and Tehranipour (2005) was originally developed
in the area of electronics for compressing scan cells results for large circuits.
The main differences between this technique and RLH are as follows. First, in
Nourani and Tehranipour (2005) only some bits in a bit vector are of interest,
the others, called “don’t cares” can be replaced either by zeros or ones, depend-
ing on the values of neighbor bits. In RLH all bits are of interest and have exact
values. Second, in Nourani and Tehranipour (2005) the lengths of homogeneous
subvectors of bits are counted and become the symbols that are encoded by
the Huffman compression. RLH uses run-length encoding for representing dis-
tances between bits having value 1. As a consequence, RLH produces more
symbols (distances) than Nourani and Tehranipour (2005). Next, the distances
are encoded by the Huffman compression.

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 631

3.2. GPU techniques in databases

Utilizing GPUs in database applications is yet not a very well researched field
of computer science. Most of the research is focused on advanced rendering,
image and volume processing as well as scientific computations (e.g., numeri-
cal algorithms and simulation). Few papers on GPU techniques are related to
databases and most of them are related to efficient sorting (see Govindaraju et
al., 2006, Grefs and Zachmann, 2006, and Chen et al., 2009) or optimization
of typical database operations (see Govindaraju et al., 2004) (selections based
on multiple predicates and aggregations). Some approaches to accelerating data
mining techniques on GPUs have also been proposed (see Bohm et al., 2009;
Cao, Tung and Zhou; 2006, Andrzejewski, 2007 and Shalom, Dash and Minh,
2008).

Compression techniques with the support of GPUs mainly focus on com-
pressing images (see Erra, 2005). To the best of our knowledge, the only pa-
per dedicated to the problem of accelerating compression and decompression of
bitmap indexes with the support of GPUs is Andrzejewski and Wrembel (2010).
It presents the implementation of the WAH compression technique on GPUs and
discusses the efficiency of this implementation.

4. Algorithms

In this section we present four algorithms: (1) an algorithm for extending an
input bitmap (Algorithm 1), (2) an algorithm for compressing an extended in-
put bitmap (Algorithm 2), (3) an algorithm for decompressing of a compressed
bitmap to its extended version (Algorithm 5) and (4) and algorithms for per-
forming bitwise operations on compressed bitmaps (Algorithms 6 and 7).

As the first step of compression, bitmaps are extended by Algorithm 1,
which appends a single 0 bit after each consecutive 31bit subbitmap. The al-
gorithm starts with appending zeros to the end of input bitmap B, so that its
length is a multiplication of 31 (line 1). Next, the number n of 31bit subbitmaps
of B is calculated. Once the value n is calculated, it is possible to find the size
of the output bitmap E (32*n) and allocate it (line 3). Given E, the algorithm,
obtains subbitmaps of B, appends a 0 bit and stores the results in the appropri-
ate words of E. Notice that each operation of storing refers to a different word
of the output bitmap, and therefore each word may be computed in parallel.

Algorithm 1 Parallel extension of data

Require: : Input bitmap B
Ensure: : Extended input bitmap E
¢ B« B+ 031 ||B|| mod 31
: n«— ||B||/31
: Create bitmap E filled with zeros, such that ||E|| = 32 n
for i — 0 to n — 1 in parallel do
E(i) « Bius1—(i4+1)x31-1 + 01
end for
FE contains the extended bitmap B

NPT

632 W. ANDRZEJEWSKI, R. WREMBEL

Extended bitmaps are compressed by Algorithm 2. It is composed of
seven stages. Executions of stages must be sequential, but each of these stages
is composed of operations that may be executed in parallel.

The first stage (lines 2-7) determines classes of each of the words in the
input bitmap E (where each word is either a tail word or a pre-fill word). The
most significant bit in each word is utilized to store the word class information.
If the word is a pre-fill word, we store 1 in the most significant bit. If the word
is a tail word, we leave it without change as the most significant bit is zero
by default (see Algorithm 1). To distinguish between a full and empty pre-fill
word, one just needs to check the second most significant bit. Let us notice that
tail words already have the final form, consistent with the PLWAH algorithm.
Pre-fill words also have correct two most significant bits, but they are not yet
rolled into a single word and their 25 less significant bits do not encode counters
(i.e., they are not yet fill words). This will be achieved in the subsequent stages.
Notice that each word in this stage is processed independently and therefore all
words may be calculated in parallel.

The second stage (lines 8-16) divides the input bitmap into blocks of words
of a single class, where each block will be compressed (in the subsequent stages)
into a single fill or tail word. To store the information about ending positions
of the aforementioned blocks we use array F. F has the size equal to the
number of words in the input bitmap E. The array stores 1 at position i if the
corresponding word F(7) in the bitmap is the last word of the block. Otherwise,
the array stores 0. Word number i is the last word of the block if it is a tail
word, or the word number i + 1 is either a pre-fill word of a different class (the
words differ on the two most significant bits) or a tail word which differs on
more than a single bit from the preceding pre-fill word number . This stage
may also be easily parallelized, as each of the values in the array F' may be
calculated independently.

The third stage (line 17) performs an exclusive scan on array F and stores
the result in the array SF. The result of this operation is used in the subsequent
stages for calculating the sizes of each of the blocks. It is easy to notice that
for consecutive indexes ¢ such that F[i] = 1, values SFi] will be consecutive
natural numbers starting with zero. Such values may therefore be used as the
output indexes into another array (7'1), which will contain a single value for
each block in the input bitmap. Moreover, it is possible to obtain the size of
this array by summing the last value stored in array SF with last value in array
F (notice that the last value in F' always equals 1). This size is stored in the
variable m. Efficient, parallel algorithms for performing the scan operation have
been proposed in the research literature (see Harris, Sengupta and Owens, 2007,
and Sengupta et al., 2007).

The fourth stage (lines 19-24) prepares an array T'1 of the size equal to
m. For each word E(i), for which F[i] equals 1 (last words of the blocks) the
algorithm stores, in the array T'1 at the position SFi], the number of words in
all of the blocks up to, and including the considered word. The aforementioned

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 633

number of words is equal ¢ + 1. Values stored in 7T'1 are used by the subsequent
stages for calculating the numbers of words in blocks, and they allow to retrieve
words from the input bitmap E. This stage may be easily parallelized, as all of
the writes are independent and may be performed in any order.

The fifth stage (lines 25-31) prepares an array T2 of the size equal to m.
For each position ¢ of the array T2 the algorithm calculates the difference
T1[i] — T1[i — 1], which gives the number of words in the corresponding block.
The calculated difference is divided by 22° — 1 and rounded up, in order to cal-
culate the number of fill words needed to encode the corresponding block. The
calculated number of fill words is stored in T2[i]. As each value is calculated
independently, this stage may be easily parallelized.

The sixth stage (line 33) performs an in-place exclusive scan on the array
T2. The resulting array T2 contains, for each block, the starting position in
the output bitmap, at which the compression of the corresponding block should
start. Moreover, the sum of the last values in the array T2 before and after scan
gives the number of words in the compressed bitmap.

The last, seventh stage (lines 35-61) generates the final compressed bitmap.
The stage starts with obtaining the preprocessed words from bitmap FE, from
the positions, where array F' stores ones (using the indexes stored in array T'1).
Each of these words is a representative for its block. Moreover, the number
of words in the block is calculated based on the values stored in the array
T1 similarly as in the fifth stage. Finally, the starting position, at which the
compressed words should be stored is retrieved from the array 72. Based on
the retrieved preprocessed word and the number of words in a block, one or
more compressed words are generated. If the retrieved word is a pre-fill word, a
sequence of corresponding fill words is stored in the output bitmap, starting at
position k, such that the overall number of words encoded in these fill words is
equal to the number of words in a block. If the retrieved word is a tail word such
that it contains only a single 1, or a single 0 bit, then similarly as in previous
case, a sequence of empty or full fill words is generated. This time, however,
the last fill word encodes the position of the aforementioned bit. In all other
cases, the retrieved word is stored in the output bitmap C in its original state.
Once these operations are finished, bitmap C' contains the compressed result.
This stage may be easily parallelized as well, as all of the output words are
computed independently. Let us notice that compression of each of the blocks
is sequential. Though it is possible to create a fully parallel algorithm, it would
require more stages, and it would be more memory consuming. Moreover, in
most cases, the number of words generated for each of the blocks should be very
small, as there is only one fill word generated for each 22° — 1 pre-fill words in
the input bitmap, which roughly corresponds to 128MB of data.

Let us now analyze Algorithm 5 that implements decompression. It is
composed of several stages, each of which must be completed before the next
one is started, but each stage may process input data in parallel.

634 W. ANDRZEJEWSKI, R. WREMBEL

Algorithm 2 Parallel compression of extended data
Require: : Extended input bitmap E

Ensure: : Compressed Bitmap C

1 n o ||E]l/32

2: Create an array F of size n {0 based indexing}

3: for i < 0 to n — 1 in parallel do

4: if E(i) = 032 or E(i) = 131 + 0 then
5: E(i)31 < 1b

6: end if

7: end for

8: for i +— 0 to n — 2 in parallel do

9: {For definition of NextNotEqual see Algorithm 3}
10: if NextNotEqual(E(7), E(i + 1)) then
11: Fli] — 1

12: else

13 F[i] —0

14: end if

15: end for

16: Fln—1] «— 1

17: SF <« exclusive scan on the array F

18: m «— F[n — 1] + SF[n — 1] {m is the number of words in the compressed bitmap}
19: Create arrays T'1 and T2 of size m {0 based indexing}

20: for i — 0 to n — 1 in parallel do

21: if F[i] =1 then

22: T1[SF[i]] «—i+1
23: end if
24: end for

25: for i — 0 to m — 1 in parallel do
26: count «— T1[i]
27: if ¢ # 0 then

28: count — count — T1[i — 1]
29: end if

30: T2[i] = [count/(2%° — 1)]

31: end for

32: rs «— T2[m — 1]

33: T2 «— exclusive scan on the array T2 {Original T'2 array is no longer needed}
34: rs —rs+T2[m — 1]

35: Create a bitmap C such, that ||C|| = rs * 32

36: for i — 0 to m — 1 in parallel do

37: count — T1[i]

38: j «— count — 1

39: k — T2[i]

41: if ¢ # 0 then

42: count — count — T1[i — 1]

43: end if

44: if X371 = 1b then

45: tempOut «— 135 + 05 + X30—31

46: storeWords(tempOut,count,k,C) {For definition of storeWords function, see Algorithm
1

47: C(k) < 25bit representation of count + 05 + X30—31

48: else if [{p =0,...,30: B, = 1b}| =1 then

49: p < position of 1 in B increased by 1.

50: tempOut «— 135 + 05 + 10b

51: storeWords(tempQOut,count,k,C)

52: C(k) < 25bit representation of count+ 5bit representation of p + 10b

53: else if [{p =0,...,30: B, =0b}| =1 then

54: p < position of 0 in B increased by 1.

55: tempOut «— 135 + 05 + 11b

56: storeWords(tempOut,count,k,C)

57: C(k) < 25bit representation of count+ 5bit representation of p + 11b

58: else

59: C(K)— X

60: end if

61: end for

62: C contains the compressed bitmap E

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 635

Algorithm 3 NextNotEqual function

Require: : Current word A and next word B
Ensure: : True, if A and B should be considered as not equal, false otherwise
if A=031 +1band |[{¢=0,...,30: B; = 1b}| =1 then
Return FALSE
else if A = 132 and [{i =0,...,30: B; =0b}| =1 then
Return FALSE
else
Return logical value of expression: Aszg—31 # Bso—31 or As; = 0b
end if

NPT

Algorithm 4 StoreWords function

Require: tempOut word to be stored, count the word counter, k store position, C' output bitmap
Ensure: C contains appropriate number of tempOut words
while count > 2%° — 1 do
count — count — (22° — 1)
C(k) «— tempOut
k—k+1
end while

Algorithm 5 Parallel decompression of compressed data

Require: : Compressed Bitmap C
Ensure: : Extended input bitmap E
1: m « ||C]]/32

2: Create an array S of size m

3: for i +— 0 to m — 1 in parallel do
4 if C(i)31 = 0b then

5: S[i] — 1

6: else
7.
8
9

S[i] « the value of count encoded on bits C(i)p— 24 increased by 1 if C(i)a5—29 # (0)5
end if
: end for
10: SS « exclusive scan on the array S
11: n <« SS[m — 1] + S[m — 1] {n contains the number of words in a decompressed bitmap}
12: Create an array F of size n filled with zeroes {0 based indexing}
13: for i — 1 to m — 1 in parallel do
14: F[SS[]—1] « 1
15: end for
16: SF <« exclusive scan on the array F
17: Create a bitmap E of length ||E|| = n * 32
18: for i <— 0 to n — 1 in parallel do
19: D« C(SFi])
20: if D31 = 0b then

21: E(i) — D

22: else

23: if D3p = 0b then

24: E(’L) «— ()32

25: else

26: E(’L) «— 131 + 01

27: end if

28: if (SF[i] # SF[i+ 1] or i =n — 1) and Da5_29 # 05 then
29: p < value encoded on Dy5_,29 decreased by 1
30: Negate bit E (i),

31: end if

32: end if

33: end for

34: E contains a decompressed bitmap C

636 W. ANDRZEJEWSKI, R. WREMBEL

The first stage (lines 1-9) creates array S of the size equal to the number
of words in the compressed bitmap C. For every word C(i) in the compressed
bitmap, the algorithm calculates the number of words that should be generated
in the output decompressed bitmap, based on the data contained in word C(7),
and store the calculated value in array S at position 7. This stage is just a
prerequisite for the next stage. Notice that this stage may be easily parallelized,
as each value of S may be calculated independently.

The second stage (line 10) performs an exclusive scan on array S and stores the
result in array S.S. The result of this operation is directly tied to storing decom-
pression results. Notice that after exclusive scan, for each word C(4), array SS at
position ¢ stores the number of the word in the output decompressed bitmap at
which decompression of the considered word should start. Based on the results
of the exclusive scan one may also calculate the size of the output decompressed
bitmap. This size is equal to the sum of the last values in arrays S and SS.

The third stage (lines 11-15) creates array F', whose size is equal to the num-
ber of words in the output decompressed bitmap. The array initially contains
only zeros. Next, for each position SSi| stored in array SS we store 1 in array
F' at position SS[i] — 1. We omit position stored in SS[0] as it is always equal
0, and there are no entries of negative positions. The aim of this stage is to
create an array, where 1 marks the end of the block into which some fill or tail
word is extracted. Each assignment in this stage may be executed in parallel,
as each assignment targets a different entry in array F.

The fourth stage (line 16) performs an exclusive scan on array F' and stores
the result in array SF. Once this stage is completed, array SF' contains at each
position ¢ the number of the word in the input compressed bitmap C, which
should be used to generate output word E\(i).

Fifth stage (lines 17-33) performs the final decompression. For each word
E(i) in the output bitmap, the algorithm performs the following tasks. First, the
number of the word in compressed bitmap C' which should be used to generate
word E(7) is retrieved from array SF, from position i. Second, the word of the
retrieved number is read from compressed bitmap C, and based on its type,
value E(7) is derived. If the retrieved word is a tail word, it is inserted into E(i)
without any further processing. If the retrieved word is a fill word, depending
on whether it is an empty or full word, 032 or I3; + 0 is inserted into E(i),
respectively. If the fill word encodes a bit position at which the last encoded
word differs from the previous words, and the currently decompressed word is
the last word of the block (SF[i] # SF[i+ 1]), the bit of the decompressed
word, at the encoded position is negated. Once the last stage is finished, F
contains the decompressed bitmap. As all of the output words are calculated
independently, calculation of each word may be run in parallel.

Compressing/decompressing bitmaps using a GPU requires data transfer
between the host memory and the device memory. This transfer is done by
means of the PCI-Express x16 bus. The transfer is very slow compared to the
internal device memory bandwidth (see NVidial, 2010). This problem can be

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 637

partially eliminated by processing all queries on the device. There are several
benefits of such an approach: (1) there is no need to download decompressed
bitmaps from the device, (2) only compressed bitmaps need to be uploaded
that are small and the transfer may be performed in parallel with computations
performed on the device, (3) the computing power of the device can be used
in order to perform bitwise operations. The only task of the host during the
query processing should be to initiate data transfers when needed and to start
kernels on the device. Other than that, the host is free to do any other tasks.
The device should decompress the received bitmaps and perform bitwise opera-
tions on them. Once all of the calculations are finished, the final bitmap should
be transferred from the device to the host. This last stage is unfortunately
very slow as the device—host transfers are the slowest. Moreover, the resulting
bitmap is decompressed, and therefore very large. Nonetheless it is beneficial,
as we only need to transfer one such bitmap (we would have to download every
decompressed bitmap if the query was performed on the host). It is also possible
to perform bitwise operations on compressed bitmaps in order to eliminate the
need for bitmap decompression step. Our algorithm for parallel bitwise oper-
ations on compressed bitmaps is dedicated primarily to the WAH algorithm,
though the efficient parallel conversion of the PLWAH compressed bitmap to
the WAH compressed one is simple.

Let us consider Algorithm 6 which performs such conversion. The algo-
rithm is composed of three stages, each of which must be completed before the
next one is started. Notice that each stage may process input data in parallel.
The main difference between WAH and PLWAH compression algorithms is that
fill words in PLWAH may encode additional words at the end of the compressed
run. Such words therefore need to be decomposed into two WAH words: one
fill word and one tail word.

The first stage (lines 2-5) creates array S of the size equal to the number
of words in the PLWAH compressed bitmap. Consequently, each entry in the
array corresponds to one word in the input, compressed bitmap. Each entry
in this array stores the number of words that the corresponding word in the
PLWAH compressed bitmap needs to be decomposed to. If the PLWAH word is
a tail word or a fill word which does not encode an additional word at the end
of the run, it does not need to be decomposed and therefore the value stored in
the array should be equal to 1. On the other hand, if the PLWAH word is a fill
word, which encodes an additional word at the end of the run, the value in the
array should be equal to 2 as it needs to be decomposed into two WAH words.

The second stage (line 6) performs an exclusive scan on array S and stores
the result in array SS. The result of this operation is directly tied to storing the
conversion results. Notice that after exclusive scan, for each word C(z), array
SS at position ¢ stores the number of the word in the output converted bitmap
at which decomposition of the word C'(7) should start. Moreover, the sum of the
last values of the arrays S and SS is equal to the number of words the resulting
bitmap will have (see line 7).

638 W. ANDRZEJEWSKI, R. WREMBEL

Algorithm 6 Parallel conversion of PLWAH to WAH algorithm

Require: : PLWAH Compressed Bitmap C
Ensure: : WAH Compressed Bitmap W
s m o |[Cl/32
Create an array S of size m
for i — 0 to m — 1 in parallel do
S[i] < the number of words the word C (i) needs to be decomposed to
end for
SS « exclusive scan on the array S
: n«— SS[m — 1] + S[m — 1] {n contains the number of words in a converted bitmap}
: Create a bitmap W of length [|[W]| = n * 32
: for i — 0 to m — 1 in parallel do
10: W (SS[i]) < the first word, the word C(i) decomposes to
11: if S[i] = 2 then

LRI R W

12: W (SS[i] + 1) < the second word, the word C (i) decomposes to
13: end if
14: end for

15: W contains a converted bitmap C

The third stage (lines 9-14) performs the final conversion. In parallel, each
of the words in the input bitmap is decomposed into one or two WAH words
and stored in the output bitmap at the position determined by the values stored
in array SS. This stage finalizes the PLWAH to WAH conversion.

Let us now consider how bitwise operations on WAH compressed bitmaps
may be performed. Each compressed word in WAH compression scheme repre-
sents one or more words which are always the same, i.e. no compressed word
may be decompressed into several distinct words. Consequently, given any two
compressed words one may always determine a single word that is a result of the
bitwise operation between them. There is, of course, the problem of the value
of the counter in the case when both of the compressed words are fill words, but
we will consider it later. Let us now consider an exemplary situation, where the
first compressed bitmap C'1 contains two words C1(1) and C1(2), which decom-
press into 3 and 4 words, respectively, whereas the second compressed bitmap
C2 contains three words C2(1), C2(2) and C2(3), which decompress into 2, 2
and 3 words respectively. In such a case one needs to determine the results of
bitwise operations between pairs of words: C1(1) and C2(1), C1(1) and C2(2),
C1(2) and C2(2), and finally C'1(2) and C2(3). The counters of the obtained
fill words may be determined easily based on values of counters of previously
generated results of bitwise operations. In the case of the above example, the
first generated word will have counter equal to 2. The second word will have
counter equal to 1, as 2 (decompressed) words from the C1(1) are already cov-
ered by the first generated word. The remaining counters may be determined
similarly. The whole process is presented in Fig. 1.

Performing of the operations described above is relatively simple when done
in sequence, compressed word after compressed word. Obtaining the same re-
sults in parallel is much more difficult. Our parallel algorithm for performing
bitwise operations on WAH compressed bitmaps is presented in Algorithm 7.
Similarly, as in all previous algorithms, this algorithm is also composed of seve-

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 639

c11) ¢ c1E)

Pairs | C1(1), C2(1) G L o | C1(2), €2(3)
c1 C1(1) 3 words 1 C1(2) 4 words

c2 C2(1) 2 words | C2(2) 2 words C2(3) 3 words
Counters 2 words ‘1 word'1l word: 3 words

Figure 1. Finding counters in the result of compressed bitwise operation

ral stages, which must be executed in sequence. Notice that each of these stages
is composed of tasks that may be executed in parallel.

The first stage (lines 1-7) creates two arrays, S1 and S2, which correspond
to the input bitmaps C'1 and C2, respectively. The number of entries in each
of the arrays corresponds to the number of words in its corresponding bitmap.
Consequently, each entry corresponds to a single word in the input bitmap.
During this stage each compressed word is analysed. If it is a fill word, its
counter (i.e. the number of words it may be decompressed to) is stored in the
corresponding entry in the S1 or S2 array. If it is a tail word, then 1 is stored
in the corresponding entry in the S1 or S2 array, as tail words do not change
during decompression. For example, if S1[2] = 4, then C1(2) is a fill word that
may be decompressed into 4 words. This stage is a prerequisite for the next
stage.

The second stage (lines 8-10) calculates an inclusive scan of arrays S1 and
52, obtained in the previous stage and stores the results in arrays SS1 and SS2,
respectively. These arrays now store, for each of the words in the input arrays
C1(i) and C2(i), the number of words that may be obtained by decompressing
all of the words from arrays C'1 and C2 up to and including C1(i) or C2(i).
For example, if $52[10] = 20 then by decompressing words C2(i), where i =
0,...,10, one would obtain 20 decompressed words. Notice that arrays SS1 and
552 are sorted in an ascending order and contain unique values.

The third stage (lines 11-16) stores in the least significant bit of each of the
values in arrays SS1 and SS2 the information whether the value comes from
array SS1 or S52. Notice that after finishing this stage no value stored in
one of the arrays appears in the second one (and vice versa). This stage is a
preliminary step for the fourth stage that merges these two arrays. The third
stage is required because of two reasons. Firstly, because of the limitation of
the merge algorithm which works correctly only for arrays of distinct values.
Secondly, because in the subsequent stages, the information about the source of
value in the merged array will be required.

The fourth stage (line 17) merges the two arrays obtained in the previous
stage. The result of the merging is stored in an array M.S. The algorithm for
efficient parallel merge on GPUs of two sorted arrays is described in Satish,
Harris and Garlang(2009). The result of merging helps to determine in the

640 W. ANDRZEJEWSKI, R. WREMBEL

subsequent stages which pairs of compressed words will need to be processed to
obtain the result. Recall the pairs of compressed words that were considered
in the example of Fig. 1. Each consecutive pair contained one word from the
previous pair and one new word (though there are cases in which both words
may change). The least significant bits in the values in the merged array show
for consecutive pairs which compressed word (C1 or C2) is different from the
previous pair. The cases where both words in a pair change may be detected
by comparing all but the least significant bits in the two consecutive values
in the merged array. If they are equal, then both of these values represent
a simultaneous change of both words in a pair. The fifth stage (lines 19-27)
detects whether the merged array contains duplicate values, if the information
appended in the third stage is ignored. The result of this stage is array F' that
for each of the values in array M S stores 0 if the next value in this array is
equal to the current value and 1 otherwise. The number of ones in this array is
equal to the number of words in the output bitmap.

The sixth stage (line 28) performs an exclusive scan of array F and stores
the result in array SF. Array SF stores, for each of the values in array M S,
an information to which word in the output they apply to. For example, if
SF[6] =4, then the fourth word of the output bitmap will be calculated based
on the word from the one of the input arrays (C'1 or C2) that is determined by
the least significant bit in M S[6] (recall the third and fourth stage). Moreover,
if SF[6] = 4 then the counter of the fourth word in the output bitmap (if it is a
fill word) is equal to (M S[7] shift right by 1) — (M S[6] shift right by 1) (as long
as the difference is not equal to zero). Finally, as the sum of the last values in
arrays F' and SF is equal to the number of ones in F, then it gives the number
of words in the output bitmap.

The seventh stage (lines 30—48) creates three arrays, F'1, F2 and R. To ex-
plain the meaning of these arrays let us once again recall the pairs of compressed
words that were considered in the example of Fig. 1 and the fact that each con-
secutive pair differed from the previous one by only one word (though it may
happen that both words in a pair may change). Each of the arrays created in the
seventh stage has as many entries as there are pairs that must be processed to
obtain the result. Entries in the arrays F'1 and F'2 indicate for each pair which
compressed word (from bitmap C1 or bitmap C2 respectively) is different with
respect to the previous pair. For example, if F'1[5] = 1 and F2[5] = 0, then to
calculate the output word number 5 we need to use a next word from bitmap
C'1 and the word from bitmap C2 used to calculate the previous (fourth) output
word. Array R contains the values of counters for the output words.

The eighth stage (lines 49-51) performs an inclusive scan on arrays F'1 and
F2 and stores results in arrays SF'1 and SF2, respectively. These arrays, at
each position i store the numbers of words in arrays C'1 and C2 based on which
should the word number ¢ in the output be calculated.

The final, ninth stage (lines 30-48) generates the output bitmap. In parallel,
for each of the output words, based on the information stored in the arrays SF'1

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 641

Algorithm 7 Bitwise operation on two compressed bitmaps

Require: : WAH Compressed Bitmaps C1 and C2
Ensure: : PLWAH Compressed Bitmap C'C containing result of bitwise operation of input bitmaps
for j < 1 to 2 in parallel do
mj — ICj]/32
Create an array Sj of size mj
for ¢ — 0 to mj — 1 in parallel do
Sj[i] < the number of words the word Cj(i) may be decompressed to
end for
end for
for j < 1 to 2 in parallel do
SSj < inclusive scan on the array Sj
10: end for
11: for j « 1 to 2 in parallel do
12: m «— ||Cj]|/32

LRI RN

13: for i — 0 to m — 1 in parallel do

14: SSj[i] < (SSj[i] shift left by 1 bit) bitwise and (j — 1)
15: end for

16: end for

17: M S < merged arrays SS1 and SS2

18: m « ||MS||/32

19: Create an array F' of the size equal to m

20: for i +— 0 to m — 2 in parallel do

21: if (M S[i] shift right by 1) # (M S[i + 1] shift right by 1) then
22: Fli] — 1

23: else

24: Fli] <0
25: end if

26: end for

27: Flm —1] < 1

28: SF « an exclusive scan of the array F'

29: r «— F[m — 1]+ SF[m — 1]

30: Create two arrays F'1 and F2 of the size equal to r filled with zeroes
31: Create an array R of the size equal to r

32: Create a bitmap CC of the length equal to r * 32

33: for i +— 1 to m — 1 in parallel do

34: if M S[i] bitwise and 1 = 0 then

35: F1[SF[i]] <« 1

36: else

37: F2[SF[i]] — 1

38: end if

39: if (M S[i] shift right by 1) # (M S[i — 1]shift right by 1) then

40: R[SFi]] < (MS][:] shift right by 1) — (M S[: — 1]shift right by 1)
41: end if

42: end for

43: if M S[0] bitwise and 1 = 0 then

44: F1[0] — 1

45: else

46: F2[0] — 1

47: end if

48: R[0] «— M S[0] shift right by 1;

49: for j < 1 to 2 in parallel do

50: SFj « exclusive scan on the array Fj
51: end for

52: for i +— 0 to r — 1 in parallel do

53: bl — C(SF1[i])

54: b2 — C(SF2l[i])

55: if bl or b2 encodes a WAH tail word then

56: CC[i] « bitwise operation between EX(bl) and EX(b2) {for description of the EX
function see the appropriate paragraph in the section 4}

57: else

58: CC[i] «— a PLWAH fill word of the fill bit value calculated based on bl and b2 and the
counter equal to R[]

59: end if

60: end for

61: CC contains the result of bitwise operation between C1 and C2

642 W. ANDRZEJEWSKI, R. WREMBEL

and SF2, appropriate words from C1 and C2 are retrieved. If both of the
retrieved words are fill words, then a new fill word with a counter retrieved
from array R is created. The information whether it is an empty or full fill word
is determined based on the type of bitwise operation and the retrieved fill words.
If one of the retrieved words is a tail word then the retrieved pair of compressed
words must be processed differently. We use function EX (x), which transforms
word z in the following way. If word z is a tail word, then it remains unchanged.
If word « is a fill word, it is changed into either (1) a word composed of 32 bits
equal to 0 or (2) 31 bits equal to 1 and the most significant bit equal to 0. Next,
an appropriate bitwise operation is performed and an output word is generated.
The output words are stored in output array CC' that finalizes the algorithm.

5. Experimental evaluation

In order to evaluate the performance of the developed GPU versions of PLWAH,
we ran multiple experiments on a Core i7 2.8GHz CPU and NVIDIA Geforce
285 GTX graphics card. In the experiments we measured:

e CPU compression, decompression, and recompression times (applied to an
extended bitmap, see Algorithm 1),

e GPU compression, decompression, and recompression times,

e time of uploading the input bitmap to the graphics cards memory (sepa-
rately for each type of operation),

e time of downloading the output bitmap from the graphics cards memory
(separately for each type of operation),

e time of calculating bitwise operation between two bitmaps using the fol-
lowing variants:

Variant 1. (1) sending two compressed bitmaps to the device, (2) de-
compressing them, (3) performing bitwise operation on decompressed
bitmaps, (4) sending the result back to the host;

Variant 2. (1) sending two compressed bitmaps to the device, (2) per-
forming bitwise operation on the compressed bitmaps, (3) decom-
pressing bitwise operation result, (4) sending decompressed result
back to the host;

Variant 3. (1) sending two compressed bitmaps to the device, (2) per-
forming bitwise operation on the compressed bitmaps, (3) sending
compressed result of bitwise operation back to the host, (4) decom-
pressing result of bitwise operation result on the host;

Variant 4. (1) decompressing two compressed bitmaps on the host, (2)
performing bitwise operation on the decompressed bitmaps;

Variant 5. (1) performing bitwise operation on two compressed bitmaps
on the host, (2) decompressing the result of bitwise operation result.

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 643

Additionally, as a reference, we included performance characteristics of the
previously developed GPU version (see Andrzejewski and Wrembel, 2010) of
the Word Aligned Hybrid (WAH) bitmap compression algorithm that has been
reported to provide the shortest query execution time (see Stockinger, 2007, and
Wu, Otoo and Shoshani, 2002).

Each of the tested input bitmaps for the first four measurements was com-
posed of 1,677,721, 600 bits (200 MB). Bitwise operations between two bitmaps
were tested on 120 MB bitmaps because of the large memory requirements of
Algorithm 7. The density of bits equal to one was parameterized and ranged
from 0.5 to 1/65536 (1/2% where i = 1,2,...,16). The bits whose values were
set to one were randomly selected. We generated three instances of each of the
bitmaps for each experiment. The execution times discussed below represent
averages of three experiments. The results of the experiments are shown in
Figs. 2, 3, and 4.

[JCompression
[GPU->CPU Data transfer
[CcPu->GPU Data transfer

PLWAH
PLWAH
PLWAH
PLWAH

PLWAH

WAH
—U7C)
oW
GPU-PLWAH
WAH
W GPU-WAH
10 GPU-PLWAH
'WAH
— UV

H
H
H

1 wax
————waH
S

[GPU-PLWAH

[GPU-WAH
[GPU-PLWAH

Time [ms]
§ &8 8 8
WAH
— (11
PU-WAR
[IIGPU-PLWAH
1 wa
PU-WAH
[IRIGPU-PLWAH
[wau
PU-WAR
[IRIGPU-PLWAH
1 wan
. PU-WAR
[EIGPU-PLWAH
[wau
PU-WAH
LIS GPU-PLWAH
WAH
— 17V
oW
GPU-PLWAH

[T GPU-WAH
[T GPU-PLWAH
[T GPU-WAH
[GPU-PLWAH
[T GPU-WAH
[GPU-PLWAH

[GPU-WAH
[l GPU-PLWAH

g

1/2

1/4

1/8
1/128
1/256
1/512
1/1024
1/2048
1/4096
1/8192
1/16384
1/32768
1/65536

Probability of setting bit to 1

Figure 2. Compression and data transfer times for bitmaps of varying density

900

[CJRecompression
[GPU->CPU Data transfer
[cpu->GPU Data transfer

800
700
600
500

400 E

300

Time [ms]

GPU-PLWAH

GPU-PLWAH

200

GPU-PLWAH

100

Probability of setting bit to 1

Figure 3. Recompression and data transfer times for bitmaps of varying density

644 W. ANDRZEJEWSKI, R. WREMBEL

w
o
5]

[CJpecompression

z B GPU->CPU Data transfer
<3 [cPu->GPU Data transfer
H

=

o

N N
o G
5] o

Time [ms]
=
]
S

100

1/2048
1/4096
1/8192
1/16384
1/32768
1/65536

Probability of setting bit to 1

Figure 4. Decompression and data transfer times for bitmaps of varying density

Let us first compare the performance of our implementations of the WAH
and PLWAH algorithms. First, we may notice that PLWAH implementation is
slower than the WAH implementation (see Figs. 2, 3 and 4). This is expected, as
PLWAH is more complex than WAH and several optimizations utilized in WAH
cannot be used in PLWAH. Moreover, the GPU version of PLWAH incorporates
a stage which detects whether a counter in the fill word may be bigger than 25
bits. On the contrary, there is no such stage in the GPU version of the WAH
algorithm as 30bit counters are enough to compress the largest bitmaps given the
modern graphics card memory constraints. Another interesting observation is
that the difference between performance of PLWAH and WAH compression and
recompression algorithms diminishes for sparse bitmaps. Notice that, for bitmap
density equal to 0.5, the CPU version of the PLWAH compression algorithm is by
66% slower than the CPU version of the WAH compression algorithm. The GPU
version of the PLWAH compression algorithm is by 68% slower than the GPU
version of the WAH compression algorithm. For bitmaps of density 1/65535,
the CPU PLWAH compression algorithm is only by 6% slower than the CPU
WAH compression algorithm. The GPU PLWAH compression algorithm is only
by 4% slower than the GPU WAH compression algorithm. Similar observations
may be made for the recompression algorithm.

The fact that the difference in compression times diminishes with the de-
crease in bitmap density is probably caused by the fact that the lower the
density, the longer are the runs that may be compressed. For CPU this means
that more iterations of the main loop use the same code branch, which may
be more consistent with the CPU branch prediction algorithms. This, in turn,
causes that there is less influence of the increased complexity of the PLWAH
algorithm on processing time. In the case of GPU, this means that in most
cases each thread in a warp executes the same code branch. Execution of these
threads, therefore, does not need to be serialized. Consequently, such execution
is more similar to the WAH implementation that does not have as many code
branches as the PLWAH implementation.

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 645

The results of the experiments for compression and recompression are pre-
sented in Figs. 2 and 3, respectively. Both of these figures are very similar, as
essentially both of them present results of measuring the same algorithm. The
only difference is that the compression includes the extension algorithm and the
recompression does not. While comparing these two charts one may notice that
the extension algorithm requires about 120ms on host for the tested bitmaps,
and indeed the difference between compression and recompression time is about
102ms in the best case and 156ms in the worst case. The same difference on
the device is much smaller, i.e., 2.14ms in the best case and 2.49ms in the worst
case.

Let us now analyse the speedups achieved by our PLWAH compression, re-
compression, and decompression implementations that utilize computer graphics
cards. Table 1 presents these speedups calculated for the best, worst, and av-
erage cases. Each speedup is calculated in two variants, namely: (1) based on
the pure processing times without the data transfer times between the host and
the device, and (2) with the data transfer times included.

Table 1. Speedups achieved by GPU PLWAH compression scheme implementa-
tion

Memory transfers included

Case Compress Recompress Decompress
Best 7.409 5.316 1.324
Worst, 4.490 3.774 0.928
Average 5.495 4.272 1.141
Without memory transfers
Best 18.946 16.168 6.766
Worst 16.513 13.951 4.937
Average 17.508 14.479 6.146

Notice that the GPU-PLWAH implementation is faster than the CPU one in
almost all cases. Compression on the device is 5.5 times faster on average even if
the data transfer times are included, and 17.5 times if not. Recompression is 4.2
times faster on average with the data transfers included, and almost 14.5 times
without them. The speedups achieved for decompression are unfortunately not
as good. Though we still achieve speedup on average, the decompression on
a GPU in the worst case may be slower than on a CPU. Notice that the de-
compression itself (without memory transfer), even in the worst case, is 4.9
times faster than on the host. Low decompression performance is caused by
data transfer to and from graphics card (see Fig. 4). The host—device transfers
do not take much time as compressed bitmap is transferred. The device—host
transfers are much slower as we need to transfer the large decompressed bitmap

646 W. ANDRZEJEWSKI, R. WREMBEL

from the device to the host memory over the slow PCI-Express x16 bus. More-
over, graphics cards are designed to optimize the host—device transfers rather
than back. This feature results in substantial transfer times. As a consequence,
the benefit of performing the decompression on the device is diminished by low
transfer time.

Regarding the data transfer times, one may also notice that for compression
and recompression (see Figs. 2 and 3) the device—host transfer times monoton-
ically depend on the bitmap density, whereas host—device transfer times are
constant. This is a consistent behaviour as the less dense the bitmap is, the
smaller the compression (recompression) result (less data is transferred from
the device to the host). The host—device transfer times are constant because
the uncompressed bitmap of constant size is transferred to the device in each
experiment. For decompression one may notice a reversed situation (see Fig. 4),
i.e., the host—device transfer times monotonically depend on the bitmap den-
sity, whereas device—host transfer times are constant. This is a similar case as
described before, with a difference that a compressed bitmap is transferred to
the device, and a decompressed bitmap (of constant size) is transferred back to
the host.

Let us now consider times of performing bitwise operations between two
bitmaps (see Figs. 5 and 6). Fig. 5 presents times obtained for each of the
variants (see beginning of this section), for each of tested bitmap densities while
using WAH compression scheme.

Fig. 6 presents results of the same experiment but for the PLWAH compres-
sion scheme. Notice that both charts are very similar and the only difference
is that the times shown in Fig. 6 are slightly longer than the times in Fig. 5.
This is of course expected, as PLWAH bitwise operation algorithm is essentially
the same as WAH operation algorithm, with only one additional stage included.
We may also notice, that for dense bitmaps, the best variant is the first one,
followed by the second, fourth, third and fifth variant, though there is not much
difference between third and fourth variant. For more parse bitmaps the fourth
variant performs worse than the third one. The decrease in performance of
the fourth variant may be attributed to the previously observed phenomena of
increased decompression times on CPUs for bitmaps of this density (see An-
drzejewski and Wrembel, 2010). For the most sparse bitmaps fourth variant is
the worst. All of the other variants are comparable, though the first variant
seems to be a bit slower than the rest. Nevertheless, the first variant, which de-
compresses bitmaps and then performs bitwise operations on them, both using
the GPU, seems to be the best one. The variants using algorithms for bitwise
operations on compressed bitmaps are slower.

We attribute this to the fact that Algorithm 7 is complex and requires a
large amount of global memory. As the cost of accessing the global device
memory is high (see NVidial, 2010), this unfortunately lowers performance of
compressed bitwise operations. A little improvement of the second variant over
the first one may be observed for the most sparse bitmaps. This is because the

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 647

1200

1000 & Variant 1
-+ Variant 2
=¥ Variant 3
=& Variant 4

- Variant 5

800

600

400

200,

Query execution time [ms]

12
1/4
1/8
116
1/32
1/64
1128
1/256
1/5612

<
N
=}
=

1/2048
1/4096
1/8192
1/16384
1/32768
1/65536

Probability of setting bit to 1

Figure 5. Query execution times for several variants of query processing proce-
dures using WAH

& Variant 1
~+-Variant 2
-¥ Variant 3
=& Variant 4
- Variant 5

Query execution time [ms]
(2]
o
o

N ¥ © © o 9« o
=S = = T 9 & o

Probability of setting bit to 1

1/256
1/512

<
N
o

1/2048
1/4096
1/8192
1/16384
1/32768
1/65536

Figure 6. Query execution times for several variants of query processing proce-
dures using PLWAH

first variant needs to decompress the input bitmaps and the second does not.
For sparse bitmaps that compress well, this means that the number of global
memory accesses is smaller for the second variant than for the second one and
therefore its performance is better.

6. Summary

In this paper we presented the GPU-based implementation, called GPU-
PLWAH, of the PLWAH compression/decompression technique. GPU-PLWAH
allows to parallelize compressing and decompressing steps and to execute them
with the graphics processing units on the CUDA platform. We also presented
experimental evaluation of GPU-PLWAH, and compared it to (1) the standard
CPU-based PLWAH, (2) the standard CPU-based WAH, and (3) the GPU-based
WAH.

648 W. ANDRZEJEWSKI, R. WREMBEL

As the experiments show, the GPU-PLWAH compression performs on aver-
age 5.5 times faster than the CPU-based one. The experiments have also shown
that while decompression itself is several times faster on a GPU than on a CPU,
the data transfer between GPU memory and computer memory is a bottleneck.
Still, we may alleviate this problem to a certain degree by utilizing the fact that
data transfers and computations on the device may be performed in parallel.
However, as was suggested in Section 4, by performing the whole query on the
device, we may be able to accelerate query processing, while still freeing the
host from most of the work and removing the need for the costly device—host
transfers.

Finally, we have presented a parallel algorithm for performing bitwise oper-
ations on the WAH and PLWAH compressed bitmaps. It turned out that the
parallel algorithm did not improve the performance but it showed that parallel
bitwise operations on compressed bitmaps are possible. The implementation of
the algorithm outlined in this paper was a naive one, without any optimization.
We argue that the algorithm could be better optimized, thus offering a better
performance.

Future work will focus on: (1) lowering the number of stages and lowering
memory requirements of Algorithm 7, (2) implementing on the CUDA plat-
form other compression techniques including BBC and RLH-n, and comparing
their efficiency, (3) applying several optimizations dedicated to given graphics
cards computing capabilities, including the upcoming FERMI architecture (see
NVidia2, 2010).

References

ANDRZEJEWSKI, W. (2007) Fast K-Medoids Clustering on PCs. Proc. of the
ADMKD Workshop. Technical University of Varna, 29-44.

ANDRZEJEWSKI, W. and WREMBEL, R. (2010) GPU-WAH: Applying GPUs
to compressing bitmap indexes with word aligned hybrid. Proc. of
Int. Conference on Database and Expert Systems Applications (DEXA).
LINCS 6262, Springer, 315-329.

ANTOSHENKOV, G. and ZIAUDDIN, M. (1996) Query processing and opti-
mization in Oracle RDB. VLDB Journal 5(4), 229-237.

BouMm, C., NoLL, R., PranT, C. and WACKERSREUTHER, B. (2009) Densi-
ty-based clustering using graphics processors. Proc. of ACM SIGMOD Int.
Conference on Information and Knowledge Management (CIKM). ACM
Press, 661-670.

Cao, F., TunGg, A.K.H. and ZHoU, A. (2006) Scalable clustering using
graphics processors. Advances in Web-Age Information Management.
LINCS 4016, Springer, 372-384.

CHEN, S., ZHAO, J., QIN, J. and HENG, P.-A. (2009) An efficient sorting al-
gorithm with CUDA. Journal of the Chinese Institute of Engineers 32 (7),
915-921.

GPU-PLWAH: GPU-based implementationof the PLWAH algorithm 649

DELIEGE, F. (2009) Concepts and Techniques for Flexible and Effective Music
Data Management. PhD Thesis, Aalborg University, Denmark.

ERRA, U. (2005) Toward real time fractal image compression using graph-
ics hardware. Proc. of Advances in Visual Computing. LINCS 3804,
Springer, 723-728.

GOVINDARAJU, N.,; GRrAY, J., KUuMAR, R. and MaNOCHA, D. (2006) GPU-
TeraSort: high performance graphics co-processor sorting for large
database management. Proc. of ACM SIGMOD Int. Conf. on Manage-
ment of Data. ACM Press, 325-336.

GOVINDARAJU, N., LLoyD, B., WANG, W., LIN, M., and MANOCHA, D.
(2004) Fast computation of database operations using graphic processors.
Proc. of ACM SIGMOD Int. Conference on Management of Data. ACM
Press, 215-226.

GRESS, A. and ZACHMANN, G. (2006) GPU-ABiSort: Optimal Parallel Sort-
ing on Stream Architectures. Proc. of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE Computer Society.

HARRIS, M., SENGUPTA, S. and OWENS, J.D. (2007) Parallel prefix sum
(scan) with CUDA. GPU Gems 3. Addison Wesley, 851-875.

HurrFMAN, D.A. (1952) A method for the construction of minimum-
redundancy codes. Proc. of the Institute of Radio Engineers. The Institute
of Radio Engineers Inc., 1098-1101.

LEHMAN, T.J. and CAREY, M.J. (1986) A study of index structures for main
memory database management systems. Proc. of Int. Conference on Very
Large Databases (VLDB). Morgan Kaufmann, 294-303.

NOURANI, M. and TEHRANIPOUR, M.H. (2005) RL-Huffman encoding for
test compression and power reduction in scan applications. ACM Trans-
actions on Design Automation of Electronic Systems 10 (1), 91-115.

NVipial (2010) NVIDIA CUDA C Programming Best Practices Guide.
NVIDIA CUDA C Toolkit 2.3.

NVIpia2 (2010) NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. White Paper, NVIDIA.

O’NEIL, P. and Quass, D. (1997) Improved query performance with variant
indexes. Proc. of ACM SIGMOD Int. Conference on Management of Data.
ACM Press, 38—-49.

O’NEIL, E., O’NEIL, P. and Wu, K. (2007) Bitmap index design choices and
their performance implications. Research Report No. 62756, Lawrence
Berkeley National Laboratory.

SatHisH, N., HARRIS, M. and GARLANG, M. (2009) Designing efficient sort-
ing algorithms for manycore GPUs. Proc. of the IEEE International Par-
allel & Distributed Processing Symposium. IEEE Computer Society, 1-10.

SENGUPTA, S., HARRIS, M., ZHANG, Y. and OWENs, J.D. (2007) Scan pri-
mitives for GPU computing. Proc. of the Graphics Hardware 2007 Con-
ference. ACM Press, 97-106.

650 W. ANDRZEJEWSKI, R. WREMBEL

SHALOM, S.A.A., DasH, M. and MiNH, T. (2008) Efficient K-Means Clus-
tering Using Accelerated Graphics Processors. Proc. of Int. Conference
on Data Warehousing and Knowledge Discovery (DaWaK) LNCS 5182,
Springer, 166—175.

STABNO, M. and WREMBEL, R. (2009) RLH: Bitmap Compression technique
based on run-length and Huffman encoding. Information Systems 34 (4—
5), 400-414.

STOCKINGER, K. and Wu, K. (2007) Bitmap indices for data warehouses In:
R. Wrembel and C. Koncilla, eds., Data warehouses and OLAP: Concepts,
Architectures and Solutions. Idea Group Inc., 157-178.

Wu, K., OTo0, E.J., and SHOSHANI, A. (2002) Compressing bitmap in-
dexes for faster search operations. Proc. of the Int. Conference on Sci-
entific and Statistical Database Management (SSDBM). IEEE Computer
Society, 99-108.

Wu, K., OT00, E.J. and SHOSHANI, A. (2004a) An efficient compression
scheme for bitmap indices. Research Report No. 49626, Lawrence Berkeley
National Laboratory.

Wu, K., OToo, E.J. and SHOSHANI, A. (2004b) On the performance of
bitmap indices for high cardinality attributes. Proc. of Int. Conference
on Very Large Data Bases (VLDB). VLDB Endowment, 24-35.

Wu, K., OT00, E.J. and SHOSHANI, A. (2006) Optimizing bitmap indices
with efficient compresion. ACM Transactions on Database Systems
(TODS) 31 (1), 1-38.

Wu, M. and BucHMANN, A. (1998) Encoded Bitmap indexing for data ware-
houses. Proc. of Int. Conference on Data Engineering (ICDE). IEEE
Computer Society, 220-230.

ZAKER, M., PHON-AMNUAISUK, S. and Haw, S. (2008) An adequate design
for large data warehouse systems: Bitmap index versus b-tree index. In-
ternational Journal of Computers and Communications 2 (2), 39-46.

