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The paper is concerned with numerical methods for finding Nash and Stackelberg equilibria 
of N-person, non-zero-sum differential games. An algorithm for open-loop solutions is proposed 
and its convergence is proved for a wide class of differential game problems. 

1. Introduction 

In the N-person non-zero-sum differential game the i-th player chooses a control 
ui (ui (t) E R'"i, t E [t0 , tf]) trying to minimize a cost functional 

'f 

Ji = J Li(x,u1 , ••• ,uN,t)dt+Ki(x(tf)) (1) 
ro 

subject to the n-dimensional state equation 

(2) 

and possibly subject to various inequality or equality constraints on the state and/or 
control variables (these will be not considered in this paper). This problem, which 
includes the optimal control problem (N = 1) and the two-person differential game 
(N =2, J, = - J2 ) as special cases, requires a more sophisticated approach to the 
concept of the optimal solution, when N~ 2 and the goals of players are not in 
total conflict [2, 17, 20, 21]. What one means by the optimal solution depends on 
the information structure of the game. If a player knows only his own cost functional 
ignoring those of other players, the min-max strategy vi> where for all admissible 
(ul, ... ,UN) 

Uj 

.i#i 
Uj 

i#i 

(3) 

may be appropriate. For games with a more complete information structure the 
min-max solution becomes unsatisfactory and other concepts of the optimal solution 
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are needed. In the context of noncooperative, non-zero-sum games two such concepts 
are considered: Nash equilibrium solution and Stackelberg equilibrium solution, 
the latter for games with biased information structure. 

Assume, that each player knows all functionals 1;, i =I, ... ,N. A natural equi­
librium point for such a game is a point u* =(u:, ... , u~) satisfying 

J ( ·"·)~J ( * * * *) i U'" ..._, i U u ... , Ui-1• U;, Ui+l> •.. ,UN (4) 

for all admissible u; and i = 1, ... ,N. 

The point u':' is called a Nash equilibrium solution for the game (1)-(2) [21]. 

Consider now a two player (N =2) non-zero-sum game, where the first player 
knows only his own cost functional, but the other one knows both 11 and 12 • Assume 
furthermore, that the second player announces his strategy to his rival before the 
latter makes his own decision. Let T be a mapping transforming the set of all admis­
sible strategies of player 2 into the set of all admissible strategies of player 1 in 
such a way, that for any admissible u2 

(5a) 

for all admissible u1 • 

Clearly, Tu2 is an optimal response of the player 1 to the strategy u2 of the 
player 2. (We will assume, that for all u2 such a response exists and is unique). 
Now, let u2 s be a control satisfying 

(6) 

for all admissible u2 • 

Then the point (u1., u2.), where u18 = Tu2., is called a Stackelberg solution of 
the game (1)-(2) with player 2 as a leader and player 1 as a follower [2, 18, 19]. 

The concept of the Stackelberg solution can be generalized for the case of N~ 2 
players, if these players are divided into two groups : A = {1, ... ,N1}-followers, 
and B={N1 +1, ... ,N}-leaders, where 1~N1 <N [17]. We assume, that each 
follower knows only functionals 11 , ... , JN,• but each leader knows all functionals 
Jl> ... , JN and, that leaders announce their strategies to followers before these can 
make their own choice. Now, T=(T1 , ••• , TN) will be a mapping with the property, 
that for any admissible v=(uN,• ... , uN) 

(5b) 

i=1, ... ,NI> for all admissible u;. 

It follows, that Tv=(T1 v, .. . , TN, v) is an "optimal response" of the followers 
to the strategies v=(uN, ... , uN) of the leaders. Note, that in this case the "optimal 

1 

response" means a Nash solution of the N1-person game, played by the followers 
after the leaders have announced their strategies. Let us assume, that for all v there 
exists a unique point Tv. Obviously, the mapping T reduces the original game to 
a N-N1-person game played by leaders, where cost functionals are of the form: 

l;(v)=l;(Tv;v), i=N1 +1, ... ,N. (7) 

---------------------------------------------------------------------
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Let vs be a Nash point of this game. Then the strategies (u., vs), where us =Tv., 
are called a Stackelberg solution of the game (1)-(2) with group B as Nash leaders 
and group A as Nash followers. ' 

In this paper we are mainly concerned with computational aspects of the dif­
ferential game theory. The development of computational techniques for obtaining 
various equilibria of non-zero-sum differential games is crucial for their potential 
applications in techniques and economics. The problem of obtaining the min-max 
solution is equivalent to solving a zero-sum, two-person differential game and it 
can be done by some of the methods proposed in Refs. [1, 15, 24] . So we have to 
focus our attention on the numerical techniques for obtaining the Nash and Stackel­
berg equilibria of N-person, non-zero-sum differential games. This subject has been 
investigated by a number of authors, but is far from being exhausted. A solution 
for linear-quadratic games (functions L;, K; are quadratic and f is linear) has been 
worked out by Starr and Ho [21], Foley and Schmitendorf [4] (Nash equilibrium) 
and Simaan and Cruz [17, 18] (Stackelberg equilibrium). Heuristic algorithms for 
a Nash solution of general, non-linear-quadratic games has been proposed by 
Starr [20], Sage [16], Holt and Mukundan [5], Pau [13, 14] and Mukundan and 
Elsner [11]. From these the Holt-Mukundan procedure seems to be the most relevant 
for practical computations. It has however a drawback of being very sensitive to 
the choice of an initial reference solution and may easily fail to converge, even 
for the relatively simple problems. In Section 3 of this paper we present an algo­
rithm, which for a wide class of differential games does not have this drawback, 
while preserving the good performance of the Holt-Mukundan procedure near 
optimum. 

It is important to note, that except for the case ofNash solution oflinear-quadratic 

games, all methods mentioned above are concerned only with open-loop equilibria. 

As. it has been demonstrated in [19-22] closed-loop equilibrium strategies are, in 

general, extremely difficult to compute and until now there exist no methods for 

such computations. Some special closed-loop structures, which are relatively easy to 

compute has been presented in [11] and [16]. 

2. Necessary conditions for Nash and Stackelberg equilibria 

An important fact in the theory of non-zero-sum differential games is, that 

~pen-loop and closed-loop Nash, as well as Stackelberg, solutions are, in general, 

different and may lead to entirely different trajectories and costs [2, 21 ]. Unfortunately, 

the necessary conditions for a closed-loop solution include terms (ofox) ui (x, t), 

what makes them virtually useless for deriving computational algorithms. One 

notable exception is the linear-quadratic game, where necessary conditions lead 

to the system of matrix differential equations of Riccati type [4, 21]. The algorithm 

presented in the next Section is concerned with a general, non-linear, open-loop 

game and is derived from the following relations: 
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(A) Necessary conditions for an open-loop Nash equilibrium solution 

Define a Hamiltonian function for each player as 

(The sign prim denotes the transposition of a vector or a matrix). 
For an open-loop Nash solution one has 1

) 

x(t0 )=x0 , 

p;= - oHdox, i=l , ... ,N, 

oH;/ou; = 0, i = 1, ... ,N. 

(B) Necessary conditions for an open-loop Stackelberg equilibrium 
solution 

Define a Hamiltonian function for each player from group A as 

and for each player from the group B as 

N 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

=Lj + J,~f+ 2.; [y;j(- oH{!ox)'+fJ;j(oH {!ou;)'] j=N1+1, ... ,N. (15) 
i= 1 

For an open-loop Stackelberg solution one has [17] 

x = f (x, u1 , .• • , uN, t), 

x(t0 )=x0 , 

p~= -oH{fox, i=l, .. . ,N1, 

oH{ fou,=O, i= 1, ... ,NL, 
., l • 
A.i= -oH)ox, J=N1 + 1, ... , N, 

N 

A.~(tf)=(ofox(tf)) Ki(x(tf ))- 2.; Yu(o2 /ox2 (tf )) K;(x(tf )) 
i=l 

j=N 1+l, ... ,N, 

-y;i= - oH} fop;, i=1 , ... , N1 ; j=N1 + 1, ... , N , 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

1
' Assuming, that the solution sought is in the interior of the set of admissible controls. 
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Yu(t0 )=0, i=1, ... ,N1 ; j=N1 +1, ... ,N, 

()Hjj()ui=O, i=1, ... ,N1 ; j=N1 +1, .. . ,N, 

()H}jauj=O, j=N1 + 1, ... ,N. 

3. Numerical algorithms 

41 

(24) 

(25) 

(26) 

Our purpose is to define a computational procedure generating a sequence of 
controls and trajectories converging to a desirable point, i.e. to a point satisfying 
necessary conditions (9)- (13) or (16)-(26). One possibility is to use the so called 
direct approach. Consider first the Nash problem and assume, that controls u; can 
be obtained from the equations (13) as functions of time, t state x and eo-state 
variables p 1 , p2 , • . • , PN· By substituting these functions for u; in (9) and (11) one 
arrives to a two-point-boundary-value problem (TPBVP) of the following form: 

x=f(x,p, t), x(to)=Xo, (27) 

p~ =(ajax) H; (x, p, t), p~ (tf) =(ajax(tf)) Ki (x(tf)), i = 1, ... , N, (28) 

where p = (Pu ... ,pN) 

J (x, p, t) = f (x, u1 (x, p, t), ... , uN (x, p, t), 

H; (x, p, t) =H; (x, u1 (x, p, t), ... , uN (x, p, t), Pi> t) . 

(29) 

(30) 

The problem (27)-(28) can be solved by some of the particular numerical algo­
rithms developped for the TPBVP [17, 23]. 

The same method can be used for finding a Stackelberg solution. Assume, that 
controls u;, i = 1, .. . ,N, and Lagrange multipliers /Ju, i=1, ... ,N1 , j=N1 +1, ... ,N, 
can be obtained from equations (20), (25) and (26) as functions of time, state and 
eo-state variables p, A, and y. By substituting these functions for u; and /Ju in (16), 
(18), (21) and (23) one obtains: 

i=J(x,p, A, y, t), (31) 

v;=(-ajax)H((x,p,, ,t), i=1, ... ,N1) (32) 

).~ =( -ajax) H} (x, p, , , t), j =N1 + 1, ... , N, (33) 

-y;j=( - ()j()p;)Nf(x,p,, ,t),i=1, ... ,N1 ;j=N1 +1 ... ,N, (34) 

with boundary conditions (17), (19), (22) and (24). 

The direct method has been successfully used for solving two-person, zero-sum 
differential games [1, 15]. Clearly, it can be also used to solve non-zero-sum, open­
loop games with small number of players. The applicability of the method to the 
more complex games is limited by the fact, that the dimensionality of problems 
(27)- (28) and (31)- (34) grows rapidly with n and Nand the efficiency, as measured 
in computer space and time required for computations, of algorithms solving TPBVP 
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is for high dimensional systems rather poor. I1 is worth to note also, that the con­
vergence of such algorithms depends to great extent on the choice of the initial 
reference solution and often it may be difficult to make a good guess. 

Another possibility for defining a computational procedure solving a differential 
game is to use the indirect approach. As before, consider first the Nash problem. 
The system of equations (9)-(13) is equivalent to the following optimal control 
problem: 

Minimize the functional 

'f( N ) J(u) = (1 /2) J _}; li(J joui) H; (x, u1, ... , uN, Pf' t) il2 dt 
t 0 t== 1 . 

subject to the state equations: 

The Hamiltonian of this problem has the form: 

N N 

(35) 

(36) 

(37) 

H(x, p, u, 1J, o, t)=(l /2)}; ll (ofou;) Hd l2 +ry' f- 2) <5; [(ofox) Hd' (38) 
i= 1 i = 1 

where 
N 

i]'=-(ojox)H, ry(tf)=- _2; o;(tf)(o2 jox2 (tf))K;(x(tf)) (39) 
i=l 

o;=-(ofop;)H=-(ofou;Hi)·(ofou;)f+o;(ofox)f, o;(t0 )=0, i=1, ... ,N. (40) 

The problem (35)-(37) can be solved, at least in theory, by an arbitrary optimiza­
tion scheme developed for the optimal control problems. It seems however, that 
for obtaining an efficient numerical procedure the particular form of the functional 
(35) should be taken into consideration. Consider a simple algorithm proposed 
by Holt and Mukundan [5, 11]. It proceeds as follows. An initial set of controls 
ui (t), t E [t0 , tf ], i = 1, .. . , N, is guessed. The state equations (36) are integrated 
forward in time, obtaining x (tf), which in turn permits the integration of the eo-state 
equations (37). The new controls are calculated by solving the equations (13), or, 
which is equivalent, by minimizing 

N 

(1 /2) }; ll(ofou;) Hi ll 2
, t E [to , tf] (41) 

i=l 

and the procedure is restarted. In some methods solving an optimal control problems 
(the so-called min-H methods) the next approximation to an optimal solution is 
obtained by minimizing the Hamiltonian of the problem in u (the control variable), 
using values of the state and eo-state variables, which have been computed for 
the current value of the control u [6, 8, 10]. The Holt-Mukundan procedure may 
be looked at as the approximation to such a method applied to solve the problem 
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(35)-(37). It follows from that fact, that in some cases, for a near-optimal trajectory 
x, the minimization of the Hamiltonian (38) can be approximated by the minimiza­
tion of the summation term (41) (Note, that if x is desirable for the differential 
game and, as a consequence, optimal for the optimal control problem, then for all 
t E [t0 , tf] u (t), which minimizes the expression (38) minimizes also the summation 
term (41) and vice-versa). 

Obviously, unlike any gradient method for solving the minimization problem 
(35)-(37), the Holt-Mukundan procedure permits to avoid the integration of the 
equations (39) and (40). Computationa~ experiments show, that in some cases the 
procedure converges in a small number of iterations. As an example consider a 
two-person game with linear dynamics and non-quadratic cost functionals defined 
in [11]: 

Example 1 

1 

Ji =(1 /2) J [x;+0,1 (u~+ut)J d(, i=1, 2 
0 

x1 =x2 + u1 , x 1 (0) =1 

X2 = -2x1 -0,1x2 +u2 , X 2 (0)= 10. 

It is easy to verify, that starting from controls u~ =u~ =0 (which are not in a direct 
neighbourhood of the solution), after two iterations of the Holt-Mukundan procedure 
one obtains an approximation to the Nash solution of the game, for which the 
value of the functional (35) is less than I0- 6 . From the other side, it can be shown, 
that the procedure may fail to converge even for rather simple linear-quadratic 
games, no-matter how close an initial reference solution will be to the actual one. 
Consider the following 

Example 2 

1 

J 1 =(1 /2) J u2 (t)dt+x(l)y(l) 
0 

1 

J 2 =(1 /2) J v 2 (t)dt-x(l)y(1) 
0 

x=u, y=v, x(O)=y(O)=O, 

where u is the control of the first player, v is the control of the second player, (x, y)' 

is the state vector and u (t), v (t), x (t) and y (t) are scalar variables defined for 
1E(0,1]. 
The Hamiltonians of the problem are defined -as : 



44 

and 
H 2 =(1/2) v2+q1 u+q2v, 

where (PI> P2)' and (qi> q2)' are eo-state vectors. 
One has: 

B. TOLWIN·SKI 

P1=P2=q1=q2=0, Pl(l)=y(l), P2(1)=x(1), q1 (1)=-y(1) 

and q2 (1)= -x (1). 

Consequently 

oHdou=u+y (1) 

and 

oH2 /ov=v-x (1). 

Let xk and yk be the trajectories computed for a reference solution (u\ vk). By 
applying the method of Holt and Mukundan one obtains, that for all t E [t0 , tf] 

(uk+l (t), vk+ 1 (t))' =const. =(-yk(1), xk(l))'. 

Now, let c be any constant number and take U 0 (t) =V0 (t) =c. Obviously, one 
has: 

i.e. 

[~:]=[ -~]·[~:]=[ =~]·[~:]=[ -~]·[~:]=[~] 

[ ~:] =[ ~:]. 
It follows, that the procedure fails to converge, no-matter how close an initial 

reference solution will be to the unique Nash point (u*, v*)=(O, 0) of the game 
(excluding the trivial case, when (u0

, v0
) = (u*, v*)). 

If for a given reference solution the Holt-Mukundan procedure does not con­
verge, one can integrate the equations (39) and (40) and use a gradient method 
to minimize the functional (35). By means of such a method it is possible to obtain 
a required approximation to a Nash point, or, if only a small number of iterations 
(one for example) will be performed-a new reference solution for the Holt-Mukundan 
procedure. It can be argued, that in many cases the latter approach will be 
computationally more efficient. A simple algorithm using this approach is defined 
below. 

Algorithm 

Step 1. Select a real number 0 < e < 1 and an initial reference solution U 0 = 
=(u~, ... , u~) E G, where G is a set of admissible controls. 

Step 2. Set U=U 0 and k=O. 
Step 3. Compute x by integrating (36) forward in time. 
Step 4. Compute p =(p1 , ... , PN) by integrating (37) backward in time. 
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Step 5. Compute J =l (u) using (38). 
Step 6. If 1=0 stop (a desirable point is found); else go to Step 7. 
Step 7. For all t E [t0 , tf] compute 

N 

it (t) =arg min }; ll(ojou) H; (x, u, p , t)ll 2
• 

i= 1 

If it E G and 

~( N ) J .}; ll(o fou;) H; (x, it, p;, t) ll 2 dt =0 
t 0 1.= 1 

then go to Step 8; else go to Step 12. 
Step 8. Compute x from the equation 

i=f(x, U, t), x(to)=Xo. 

Step 9. Compute p =(Pt. ... , PN) from the equations 

_p; = -(ofox) H;(x, it, p;, t), p; (tf) =(ofox (tf)) K.(x (tf)), 

i = 1, ... ,N. 
Step 10. Compute J =l (it). 
Step 11. If J -J~ -eJ then go to Step 19; else go to Step 12. 
Step 12. Compute O;, i = 1, ... , N, by integrating (40) forward in time. 
Step 13. Compute 1J by integrating (39) backward in time. 

Step 14. Compute VJ (u) =oHjou). 
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Step 15. If IIVJ(u)I I=O stop (The algorithm converges to a stationary point of J, 
which is not the desirable point of the game (1)-(2)); else go to Step 16. 

Step 16. Compute 

a0 =arg min J(u-aVJ(u)). 
a 

Step 17. Set it=u-a0 VJ(u). 

Step 18. Compute x, p and J as in Steps 8- 10. 

Step 19. Set k=k+ 1 and uk=it. 

Step 20. Set u = it, x=x, p=p, J=J and go to Step 6. 

To formulate the properties of the algorithm we shall need some assumptions 
about the set of admissible controls G and the functions f, L;, K;, which define 
the differential game (1)-(2). Define a set G as 

G={u : [t0 , tf]-+Q I u is continuous except at a countable number of points} (42) 

where Q is a closed, bounded and convex subset of R"' =R"'• X . .. x R"'N. 
Let G be the set of equivalence classes of functions in G, which are equal almost 
everywhere. The algorithm seeks a desirable point u* E G, such, that for almost 
all t E (t0 , tf] u':' (t) E int Q . All results given below and concerned with the con­
vergence of the algorithm are valid only, if all points uk generated by it belong to 
the set G. In practice, with an appropriate choice of Q, this condition will be usually 
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satisfied. Alternatively, the gradient VJ(u) as the direction of minimization in the 
step 16 may be replaced by its projection on the set G. 

Denote 

S={(x, u, t) I x ER", u E Q, t E [t0 , tf]}. 

We will use the following hypotheses: 

(H1) f:R" X R"' X [t0 , tf] --+ R", 

Li:R"XR111 X[t0 , tf]--+ R, i=1, ... ,N 

(43) 

and their partial derivatives of first, second and third order with respect to 
x and u exist and are continuous on S. 
Ki:R"--+ R, i=l, ... , N 

and its derivativ~s Kix> Kixx> and Kixxx are continuous on R". 

(H2) f(x, u, t)~M (llx ll + 1), V (x, u, t) E S, for some M <oo. 

(H3) f(x, u, t)=A (t) x+B (t) u, 

(o fox) Li (x, u, t) = Ci (t) x+Di (t) u, i = 1, ... , N, 

for some matrix valued functions A, B, Ci and Di. 
lloL;/ou;l l2 , i=l, .. . ,N, are convex in x and strictly convex in u, for xER" 

' and uEQ. 

THEOREM 1. Let (Hl) and (H2) be satisfied. Suppose {uk} is a sequence generated 
by the algorithm. Then, either the sequence is finite, in which case its last element 
is a stationary point of the functional (35), or it is infinite and 

lim IIVJ(uk)llz =0. 
k--> ro 

Proof. The sequance {uk} can be finite only, if for some k=k 

J (uk) =0 or II VJ (i) ll =0. 

In both cases ur: is a stationary point of the functional J. 

(44) 

Suppose now, that the sequance { uk} is infinite and, that the inequality from 
the Step 11 of the algorithm has been satisfied s times in k iterations. Then one 
has 

(45) 

Obviously, if s grows to infinity with k, then 

lim J(u~<) =0 =inf J(u), what implies also lim IIVJ(uk)ll =0. 
k--> ro u 

The boundness of s for all k means, that almost all elements of the sequence 
{uk} are obtained by the steepest descent method. It is a known result (see for 
example Ref. [3]), that a sequence obtained in this way has the property (44), if 
the gradient of the functional is Lipschitz-continuous and all uk belong to a bounded 
set. As all d' E G, to complete the proof of the theorem it is enough to show, that 
the condition 

IIJ(u)- VJ(u)llz~L llu-ullz, Vu, u E G (46) 
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is satisfied for some L<oo. This, however, follows from the hypotheses (HI) and 
(H2) and can be obtained by a repeated use of the Bellman-Gronwall and Schwartz 
inequalites. Note, that because of the assumption (H2) solutions of the equation 
(2) exist, are differentiable except at a countable number of points, and uniformly 
bounded for u E G [10]. The detailed proof of (46) is lengthy and in many aspects · 
similar to the proofs given in Appendix A of Ref. [10], therefore it is omitted here. 

THEOREM 2. Let (Hl) and (H3) be satisfied. Then the sequence {uk} generated by 
the algorithm converges in L 2 metric to a point u*, which 'is a unique minimum 
point of the functional (35) on the set G. If J (u*) =0, then u* is a desirable point 
for the differential game (1)-(2). If J (u*) > 0, then there exist no Nash solution 
of the game (1)-(2). 

Proof. It follows from (H3), that the expression 

N 

,2; 11(3j3u;) H; (x, u, p;, t) ll 2 

i == 1 

is convex in x ERn, strictly convex in u E Q and, as the set is bounded, also uniformly 
convex in uEQ. From it and from the linearity of the state equations (36) and (37) 
one gets [9], that the functional (35) is uniformly convex in u E G. The uniformly 
convex and continuous functional J defined in the Hilbert space L 2 has a unique 
minimum point u* on the convex, closed and bounded set G E L 2 [25]. Furthermore, 
for the convex functional J and the bounded set G, it follows from the property 
(44) [3], that 

limJ(uk) =min J(u) =J(u*). (47) 
k-+ oo uEG 

Finally, for the uniformly convex functional J and convex, closed and bounded 
set G, every sequence with property (47) converges in L 2 metric to the point u* [25]. 
So, as (H3) implies also (H2), the proof of the theorem is completed. 

Note, that if the assumptions of the Theorem 2 are satisfied (as in the case of 
the linear-quadratic game, for example), then the algorithm finds a desirable point 
of the differential game (1)-(2), if such a point exists, or states explicitly its non­
existence, and consequently, the non-existence of any Nash solution for a given 
game. It is worth to note also, that the results proved remain valid, if the conceptual 
rule for choosing the step length <X 0 , from the Step 16, is replaced by the easily 
implementable Armijo's rule [3]. With this and some other, rather obvious modifi­
cations an implementable version of the algorithm can be easily obtained. 

Consider now the Stackelberg equilibrium solution. As before the system of 
necessary conditions is equivalent to an optimal control problem. Unfortunately 
this problem is in general case by far more difficult to solve numerically than the 
problem (35)-(37). It follows from the fact, that this time the state and eo-state 
equations form usually TPBVP which can t be decomposed into separate one­
point-boundary-value problems. Note however, that such decomposition is possible 
if K; (x) =0 for all x and i = 1, ... , N. In this case from the equations (16)-(26) one 
obtains the following problem 
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Minimize the functional 
If 

J(u, fJ)= J Sdt 
to 

where 

f N 1 N N 1 N } 

S = (l /2) l;J; lloH{!ou; ll
2
+ i~~ 1 lloH}/ouj ll

2
+ i.J; j~~ 1 lloH}/ou;l l

2 

subject to state equations 

X=j, x(to) = Xo 

p; =- oH{! ox, p; (tf) =0 

where i=l, ... ,N1 andj=N1 +l, ... ,N. 

The Hamiltonian of this problem has the form: 

j i ,j 

where 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

1]~=- oHfox, ,11 (tf)=O (55) 

(1];)' =- oHjop; =- oS jop; + (17~)' fx + _2; (17~)' [(- fx) + fJufu;] 17; (to) =0 (56) 
j 

(11~Y=- oH/oAj=-oS/oAj+(17~)'fx, 17~Cto)=O (57) 

(11!/Y = - oHfoyu =- as ;aylj + (77~)' (- oH{ fox)- (77!/Y f x 11!/ (tf) =0 (58) 

i=1 , ... ,N1 andj=N1 +1, ... ,N. 

It is clear, that differential equations (50)-(53) and (55)-(58) can be integrated 
separately in the following order: (50), (51), (53), (52), (57), (58), (56) and (55). So, 
the problem (48)-(53) is analogous to the problem (35)-(37) and can be solved by 
the same algorithm with obvious modifications. 

THEOREM 3. If to the hypothese (HI) one adds the condition that the fourth-order 
derivatives off and L; with respect to x and u exist and are continuous, then all 
results obtained for the Nash problem (Theorems 1 and 2) hold also for the Stackel­
berg problem with K; =0. 

Proof. Under the new stronger regularity assumptions the gradient of the functional 
(48) is Lipschitz-continuous, what implies the proposition of the Theorem 1. Further­
more, it is easy to check, that, if (H3) is satisfied, then the functional ( 48) is uniformly 
convex- The state equations (50)-( 53) are linear and S is convex in x, p;, Aj, Yu 
and strictly convex in u E Q. This fact completes the proof. 
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4. Conclusion 

The research in the field of non-zero-sum dynamic games is of considerable 
importance in view of their possible applications in economics (see Refs. [12, 13]). 
It seems, that the game framework is in many cases more suitable for economic 
modelling than the classical optimization approach, which does not reflect the 
multiplicity of objectives and inevitable conflicts arising in almost all economic 
problems. In this paper we have presented numerical techniques for obtaining 
open-loop Nash and Stackelberg equilibria. The algorithm defined in Section 3 
solves variety of continuous, as well as discrete-time, dynamic game problems. 
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Metody numeryczne rozwil!zywania wieloosobowych gier 

rozniczkowych 0 sumie niezerowej 

W pracy om6wiono problemy zwi4zane z numerycznym wyznaczaniem punkt6w r6wnowagi 
wieloosobowych gier r6Zniczkowych o sumie niezerowej oraz przedstawiono pewien nowy algorytm 
obliczania punkt6w Nasha i Stackelberga. Zbiei:nosc tego algorytmu udowodniono dla szerokiej 
klasy gier r6zniczkowych. 

BLJqncJJHTeJJhHhie MeTO!l:hi perneHHH !l:H«Jl«JlapeHQHaJJhHhiX urp 

N-JJII~ o HeHyJJeBoii: cyMMe 

B CTaTblf paCCMaTpHBaeTCi! rrpo6JieMbi CBi!3aHbl C Bhl'IHCJieffireM TO'IeK paBHOBeCHi! 4Jmp4Je­
peHJ:,llfaJihHb!X Hrp N-Jllfl.( H HeHyJieBOll CyMMe. Ilpe.[(CTaBJieH HOBblll anropHTM Bbl'IHCJieiDlil TO'IeK 
H:nna H CraKeJib6epra If .[(OKa3aHhi reopeMbi o ero CXO.[(HMOCTH .[(Jii! urnpoKoro Knacca HrPOBhiX 
3a.[(a'I. 


