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A norm scalarisation was studied for finite dimensional Euclidean space by Savlukadze [1, 2]. His
results were extended partially for Hilbert space by Wierzbicki [3]. In the present note a norm
scalarisation for Banach spaces is investigated.

Let E be a linear space. Let D be a convex cone in E. Let Q be a set in E. A point
peQ is called D-optimal if

(p—D)NQ={p}. )]

Savlukadze [1,2] has proved that if E=R" and D={x=(xy, ..., X,), %;=0, i=
=1, 2, .., n} then we can find a D-optimal point in a following way.
Let

yi=inf {x;: (x4, ..., x,) € O}.
The point y=(yy, ..., ¥,) is called ‘““utopia point”, since in general y is not ne-
cessary belonging to Q. )
Now let x e Q be such a point that
p(y x)=inf p(y, 2)

ZEQ

where p is the Euclidean metric in R". Such x exist, provided Q is closed, because
Q< R". Savlukadze [I, 2] has proved that x is a D-optimal point.

For infinite dimensional Hilbert space H a result of similar character was given
by Wierzbicki [3]. Namely, Wierzbicki take an arbitrary point pe Q. Let I',=
=0 N(p—D). Let x be such a point that

p(x,p)=sup p (x, 2),

z€lp

where p is a Hilbert distance in H. Wierzbicki proved that x is D-optimal, provided
DeD*, 2
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In the present note we shall extend the results of Savlukadze and Wierzbicki
for infinite dimensional Banach spaces.
Let E be a Banach space. We assume that the cone D satisfies a f0110W1ng con-
dition
Dn(x—D)cKyO)u{x} forall xeE 3)
where
K. (@)={z:llz—ql<r).

THeOREM 1. Let E be a Banach space. Let D be closed and satisfies (3). Let Q be
an arbitrary closed set in E. Let p be a point, such that

Ocp+D. 4
Let x, € Q be a point, such that
llxo —pll=inf {|z—pll:z € O} . ®)

Then x, is D-optimal.

Proof. By condition (4) x, € p+D. Thus by (3).

(p+D) N (xo—D) = K,y (P)+ {xo}-
By definition of xq, Ky, - ,(p) " Q=0, Therefore
Xo—DNQ=xo—DNp+DNQO=9Y. Q.E.D.
THEOREM 2. Let E be a Banach space. Let D be a closed cone satisfying (3). Let ¢
be an arbitrary point of Q. Let I,=(¢g—D)NQ. Let x,€Q be a point satisfying
%o —gll=sup {llz—gll:ze I}

Then x, is D-optimal.

Proof. By the symmetry of balls in Banach spaces from (3) we get

(—=D) N (x+D) = Ky 0) U {0} - QED. (3)
Hence
(g—D) N (xo+D)= K|, (@) Y {Xo} - (6)

. Since K|, _4(q) is a convex open set, the x belongs to boundary of this set,
D is closed, (6) implies that

Xo—D) N K. —q/(@)=1{x0}- (7
Thus
(xo—D) N Iy={xo}. ®

Since xo—D<=g—D by (8) we get
(xo—=D)NQ=(xo—D)N(¢g—D)NQ=(xo—D)NI',={xo}. QED. (9

Therefore x, is D-optimal.
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Now we shall show relation between condition (3) and condition (2) given by
Wierzbicki.

THEOREM 3. Let E be a Hilbert space. Then (2) and (3) are equivalent.

Proof. (2)—(3). By definition of D*, if xe D and x* € D*, (x*, x)=>0. Thus
for ye —D*, (y, x)<0. It implies, that the angle between y and x is not smaller
then 7/2.

Thus everything can be reducted to a two dimensional consideration. Let g €
€lin (x, y). Since between x € D and y € —D* the angle is not smaller than =/2,
thus the lines {#x} {g—sy}, 7, s being reals, must intersect inside the ball K4 (0).
It implies

DN (g-D*)< Ky OV {g}. (10)

Thus by (2) we trivially get (3).

(3)—(2). Suppose that (2) does not hold. Then here are x, y € D such that (x, y) <0.

Let
g=x+ay, O<a<l.

It is easy to verify that

X=qgy,—ay € qa_D .
On the other hand

llgl® = (x+op, x+ ) =Ilx]* —2a (x, y) + o [y

and for sufficiently small «
g [1/1? < llgal>.

It implies that DN (g,—D) is not contained in Ky (0) U {g,}. Hence (3) does
not hold.

In many cases there is no such a point p that (4) holds. It can follows from fact
that, either Q is not bounded, or D does not have interior.

For these reason a following obvious extensions of Theorem 1 are important.

THEOREM 1’. Let E be a Banach space, D be a closed cone. O be a closed set. Let p
be an arbitrary point belonging to E. Let x, € Q be a point satisfying (5).
If xoep+D and
(P +D) n (xo _D) CI<||xo—p]](p) Y {xo}

then x, is D-optimal.

THEOREM 1'’. Let E be a Banach space, D and D; be closed cones, Dc=D,. Let Q
be a closed set contained in p+D;. Let x, € Q be a point satisfying (5).
If

(p+D;) N (xo—D) K,y (P) Y {0}

then x, is D-optimal.
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Since condition (4) plays an important role, we are interested how is the set
of those p that (4) holds.

THEOREM 4. Let E be a linear space. Let D be a convex cone. Let Q be an arbi-
trary set. Then the set

p={peE:Qcp+D} (11
is a convex set.

Proof. Let p,ge P. Let z be an arbitrary element of Q. By the definition of P
we can represent z in the foms
z=p+x=q+y 12)

where x, y € D. Then for «, =0, a+f=1

(04 p) z=op+pg+ax+pfy. (13)
(13) implies that z e ap+ fg+D, since ax-+ fy € D. Therefore
Qcap+pfg+D. Q.E.D. (14)

Hence P is convex.

THEOREM 5. Let E be a Banach space. Let D be a closed convex cone in E. Let O
be a closed set. Let P be a following set (11)

P={peE:Qcp+D}.
Then the set P is closed.

Proof. Let {p,} be a sequence of elements of P convergent to peE. Let z be
an arbitrary element of Q. By the definition of P, z can be represented by a
following form:

Z=Ppt X (15)
where x, € D.

Since {p,} is a convergent sequence, {x,} is convergent too. Let x=1im x,. Since

D is closed, x e D. By (15) z=p+x. If implies that

Qcp+D. Q.E.D.
By definition of P, pe P, and P is closed.
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O skalaryzacji normowej w nieskonczenie wymiarowych
przestrzeniach Banacha

W pracach [1, 2] Savlukadze podat metode skalaryzacji normowej dla przestrzeni euklidesowej
skoficzenie wymiarowej. Rezultaty jego byly czeSciowo uogoélnione przez Wierzbickiego [3] dla
nieskonczenie wymiarowej przestrzeni Hilberta. W niniejszej nocie rozszerzone zostaly wyniki
Wierzbickiego o skalaryzacji normowej na przypadek nieskonczenie wymiarowej przestrzeni
Banacha.

Cxangpuzanus HOpMbI B GecKOHeYHOM 02HAX0BOM HPOCTPAHCTBE

Cxamnsipusaidsi HOPMBI U1 KOHEYHOMEPHOTO €BKIIMIOBOTO NMPOCTPAHCTBA W3YyYaslach B pabo--
tax CamoxoBanse [1], [2]. OTu pe3ynbTaThl ObLIM YaCTMYHO PACIIMPEHBI BEXOWIKMM IS THIIb-
6eprosoro npocrpancTsa [3]. B manHoil paGoTe MCCIENOBAIACH CKASpU3alus HOPMbI i OaHa-
XOBOTO MPOCTPAHCTBA.
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